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Minimizing the Solid Angle Sum of Orthogonal Polyhedra and Guarding
them with ⇡

2
-Edge Guards

I. Aldana-Galván⇤ J.L. Álvarez-Rebollar† J.C. Catana-Salazar⇤ M. Jiménez-Salinas⇤

E. Solís-Villarreal⇤ J. Urrutia‡

Abstract

We give a characterization for the orthogonal polyhe-
dron in R3 that minimizes the sum of its internal solid
angles, and prove that its minimum angle sum is (n�4)⇡
and their maximum angle sum is (3n�24)⇡. We gener-
alize to R3 the well-known result that in an orthogonal
polygon with n vertices, (n + 4)/2 of them are convex
and (n � 4)/2 of them are reflex. We define a vertex
of a polyhedron to be convex on the faces if it is con-
vex or straight in all the faces where it participates,
and to be reflex on the faces otherwise. If a polyhedron
with n vertices and genus g has k vertices of degree
greater than 3 (in its 1-skeleton), we prove that it has
(n+8�8g +3k)/2 vertices that are convex on the faces
and (n � 8 + 8g � 3k)/2 vertices that are reflex on the
faces. Finally, we prove that if the orthogonal polyhe-
dron has k

4

vertices of degree 4, k
6

vertices of degree 6,
genus g and hm holes on its faces, then we can guard it
using at most (11e � k

4

� 3k
6

� 12g � 24hm + 12)/72
⇡
2

-edge guards (i.e., having a visibility angle of ⇡/2 to-
wards the interior of the polyhedron), improving the
bound given by Viglietta et al in [14] for open edge
guards.

1 Introduction

In the plane, to measure the interior angle of a polygon
at a vertex v, we usually consider a small enough circle
centered at v and not containing any other vertices of
the polygon, measure the length of the portion of the
circle that lies inside the polygon, and then divide it by
the radius. In this way, we can have angles that vary
between 0 and 2⇡. It has been well-known since antiq-
uity that the sum of the angles of a triangle is ⇡. Since
a simple polygon of n vertices can be partitioned into
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n � 2 triangles using diagonals, the sum of the internal
angles of a polygon is (n � 2)⇡. We extend these ideas
to polyhedra in R3.

We measure the interior solid angles of a polyhedron
in a vertex v in an analogous way to the plane. We
consider a small enough sphere centered at v, measure
the area of the portion of the sphere that lies within the
polyhedron, and then divide it by the square of the ra-
dius. In this way, we have solid angles that vary between
0 and 4⇡ since the area of a unit sphere is 4⇡.

For summing interior angles in polyhedra we cannot
use the same approach that was used for polygons. This
approach would consist in tetrahedralizing a polyhedron
and summing the solid angles of all the resulting tetra-
hedra. However, there exist examples of polyhedra that
cannot be tetrahedralized; for example, the Schönhardt
polyhedron [12]. It is also known that the sum of the
solid angles of a tetrahedron can take any value between
0 and 2⇡ [7].

These examples show that in general polyhedra, the
sum of their solid angles is not constant and their ver-
tices can have interior angles that are arbitrarily small.
However, it is an interesting question to find the mini-
mum and the maximum sums of the internal solid angles
of an orthogonal polyhedron. This sum cannot be ar-
bitrarily small because the internal solid angle of each
vertex is at least ⇡/2. We show in this paper that the
lower and upper bounds for the sum of angles of an or-
thogonal polyhedron with n vertices are (n � 4)⇡ and
(3n � 24)⇡ respectively. We also give the classification
of the families of orthogonal polyhedra achieving these
bounds.

We consider that a vertex of a polyhedron is convex
on the faces if it is a convex or a straight vertex in all the
faces where it participates, and it is reflex on the faces
otherwise. If a polyhedron with n vertices has k vertices
of degree greater than 3 in its 1-skeleton (i.e., the set of
edges and vertices of the polyhedron), we prove that it
has (n + 8 + 3k)/2 vertices that are convex on the faces
and (n � 8 � 3k)/2 vertices that are reflex on the faces.

We apply this result to address a variant of the
Art Gallery Problem in orthogonal polyhedra. Most
of the research on art gallery problems has been fo-
cused on polygons on the plane. For example, it is well
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known that every simple polygon with n vertices can
be guarded with at most bn/3c vertex guards [4], and
for orthogonal polygons bn/4c vertex guards are always
sufficient to guard the polygon [8]. Estivill-Castro and
Urrutia [6] showed that every orthogonal polygon can be
guarded with at most 3(n � 1)/8 orthogonal floodlights;
that is, vertex guards that have an angle of vision of
⇡/2. Later in [1] it was proved that (3n + 4(h � 1))/8
orthogonal floodlights are always sufficient to guard an
orthogonal polygon with n vertices and h holes.

For orthogonal polyhedra with e edges in R3, it was
conjectured that e/12 edge guards are always sufficient
to guard any polyhedron [13]. Benbernou et al. [14]
showed that every polyhedron can always be guarded
by (11/72)e � g/6 � 1 open edge guards (i.e., excluding
their endpoints).

For general polyhedra, Cano et al. [3] showed that
any polyhedron can always be guarded by (27/32)e edge
guards, and if the faces are all triangles the bound im-
proves to (29/36)e. For general polyhedra it is conjec-
tured that every simply connected polyhedron can be
guarded with e/6 edge guards [13].

We say that a ⇡
2

-edge guard is a guard located on an
edge of the polyhedron, occupying all the edge with an
angle of vision of ⇡

2

. An interior point p of the polyhe-
dron is guarded by an edge e if the segment s, described
by the shortest distance between p and e, is perpendicu-
lar to e, s is contained in the visibility angle of e, and s is
completely contained in the interior of the polyhedron.

The variant of the art gallery problem we address is
the following: Given an orthogonal polyhedron P in R3,
choose a minimum set of ⇡

2

-edge guards located on the
edges of P such that any interior point of P is guarded.
We prove that if P has k

4

vertices of degree 4, k
6

vertices
of degree 6, genus g and hm holes on its faces, then we
can guard it using at most (11e�k

4

�3k
6

�12g�24hm+
12)/72 ⇡

2

-edge guards.

2 Orthogonal Polyhedra

A polyhedron in R3 is a compact set bounded by a piece-
wise linear manifold. A face of a polyhedron is a maxi-
mal planar subset of its boundary whose interior is con-
nected and non-empty. A polyhedron is orthogonal if all
of its faces are parallel to the xy, xz or yz planes. Faces
of a polyhedron can be polygons with holes, and if the
polyhedron is orthogonal, then its faces and its holes are
also orthogonal. A vertex of a polyhedron is a vertex of
any of its faces. An edge is a minimal positive-length
straight line segment shared by two faces and joining
two vertices of the polyhedron.

2.1 Vertex Characterization in Orthogonal Polyhe-
dra

Let P be an orthogonal polyhedron in R3. We classify
the vertices of P by its interior solid angles. A vertex
x of P is classified as 1-octant if its interior solid angle
is ⇡/2 (see Figure 1a), and 3-octant if its interior solid
angle is 3⇡/2 (see Figure 1b). The 4-octant, 5-octant

and 7-octant vertices are defined in a similar way, as
illustrated in Figures 1c, 1d, 1e and 1f respectively.

In an orthogonal polygon we have three kinds of ver-
tices; convex, reflex and straight. A vertex is convex if
it has an interior angle of ⇡/2, reflex if it has an interior
angle of 3⇡/2 and straight if it has an angle of ⇡.

We say that a vertex is convex on the faces if it par-
ticipates on each of its incident faces as a convex or
a straight vertex. Thus the 1-octant, 4-octant, and 7-
octant vertices are convex on the faces. We say that a
vertex is reflex on the faces if it participates as a reflex
vertex on exactly one of its incident faces. Thus the 3-
octant and 5-octant vertices are reflex on the faces. We
will refer to a convex vertex on the faces (resp. reflex
vertex on the faces) as a convex vertex (resp. reflex ver-
tex) unless stated otherwise. Since we can have straight
vertices on the faces of a polyhedron, we extend our
concept of orthogonal polygon in order to allow them
to have straight vertices, too.

The genus g of a connected orientable surface is the
integer representing the maximum number of cuttings
along non-intersecting closed simple curves without ren-
dering the resultant manifold disconnected [9].

In our main result we use the Euler-Poincaire’s for-
mula, which states that for any polyhedron of genus g
with f faces, e edges, v vertices and a total of h holes
on its faces, the identity v � e � h + f = 2 � 2g holds.
A proof of this theorem can be found in [11].

Next, we prove the following theorem:

Theorem 1 Let P be an orthogonal polyhedron in R3

homeomorphic to the sphere with n = 2k vertices and a

connected and 3-regular 1-skeleton. Then P has (n +
8)/2 convex vertices and (n � 8)/2 reflex vertices.

Proof. Since each vertex has degree 3, the number of
edges e is 3k. By Euler’s formula, the number of faces f
is k + 2. The number of reflex vertices in an orthogonal
polygon is (n�4)/2, so the number of reflex vertices on
each face of P is (Vi � 4)/2, where Vi is the number of
vertices on the ith face of P . Then the number of reflex
vertices of P is

r =
k+2

X

i=1

Vi � 4

2
. (1)

Solving equation (1), we have

2r =
k+2

X

i=1

Vi �
k+2

X

i=1

4.
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(a) 1-octant vertex (b) 3-octant vertex

(c) 4-octant vertex (d) 4-octant vertex

(e) 5-octant vertex (f) 7-octant vertex

Figure 1: Vertex classification for orthogonal polyhedra

As each vertex belongs to three faces, it is counted three
times when adding up the first sum;

2r = 6k � 4(k + 2)

r = k � 4.

Since n = 2k, r = (n � 8)/2, and since n = c + r,
c = (n + 8)/2. ⇤

This result tells us exactly the number of convex and
reflex vertices of the family of orthogonal polyhedra that
are connected and 3-regular in its 1-skeleton. Next, we
eliminate the restriction of a connected 1-skeleton by
considering the number of holes on the faces of P and
including the genus of the polyhedron. We will also
include the 4-octant vertices. Note that these vertices
do not have degree 3, but degree 4 or 6. Some of the
4-octant vertices look like straight angles on some faces
of the polyhedron.

We introduce two lemmas that will help us to incor-
porate the 4-octant vertices in the count of convex and
reflex vertices of an orthogonal polyhedron.

Lemma 2 In an orthogonal polygon with n vertices of

which s are straight, the number of reflex vertices is r =

(n � s � 4)/2 and the number of convex vertices is c =
(n � s + 4)/2.

Proof. Since the sum of the internal angles of a simple
polygon is ⇡(n�2); and the angle of each convex vertex
is ⇡/2, of each reflex vertex 3⇡/2, and of each straight
angle ⇡,

⇡(n � 2) =
⇣⇡

2

⌘

c +

✓

3⇡

2

◆

r + (⇡)s.

Solving for c and replacing in n = c + r + s yields n =
2r + s + 4. Therefore, r = (n � s � 4)/2 and c = (n �
s + 4)/2. ⇤

If the polygon has holes, we have the next lemma.

Lemma 3 In an orthogonal polygon P with n vertices,

h holes, and a total of s straight vertices, the number of

reflex vertices is (n � s + 4h � 4)/2 and the number of

convex vertices is (n � s � 4h + 4)/2.

Proof. Note that a hole is an orthogonal polygon such
that its convex vertices are reflex in P , its reflex vertices
are convex in P , and its straight vertices are straight in
P . Thus, using Lemma 2, we have that if m is the
number of vertices in P without the holes, sm of which
are straight, and each hole has ni vertices, si of which
are straight, then the number of reflex vertices of P is

r =

 

h
X

i=1

ni � si + 4

2

!

+
m � sm � 4

2
=

n � s + 4h � 4

2
.

Then it follows automatically that the number of convex
vertices in P is (n � s � 4h + 4)/2. ⇤

Let k
3

be the vertices of degree 3, k
4

the vertices of
degree 4, and k

6

the vertices of degree 6 in the 1-skeleton
of a polyhedron.

We are ready to give one of our main results.

Theorem 4 Let P be an orthogonal polyhedron in R3

with n = k
3

+ k
4

+ k
6

vertices and arbitrary genus g.
Then P has (n � 3(k

4

+ k
6

) + 8g � 8)/2 reflex vertices

and (n + 3(k
4

+ k
6

) � 8g + 8)/2 convex vertices.

Proof. The number of edges e is 3k
3

/2 + 2k
4

+ 3k
6

.
Using the Euler-Poincaré formula, the number of faces
f is k

3

/2 + k
4

+ 2k
6

+ 2 + h � 2g. By Lemma 3, the
number of reflex vertices in P is

r =
f
X

i=1

Vi � si + 4hi � 4

2
, (2)

where Vi is the number of vertices and si is the number
of straight vertices and hi is the number of holes on the
ith face of P .
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Solving Equation (2), we have

2r =
f
X

i=1

Vi �
f
X

i=1

si +
f
X

i=1

4hi +
f
X

i=1

4.

In the first sum we count the total number of vertices:
the k

3

vertices are counted three times, the k
4

vertices
are counted four times and the k

6

vertices are counted
six times. The second sum counts the total number of
straight vertices but there are only k

4

vertices and they
are counted two times. The third sum gives the total
number of holes in P . Then we have

2r =k
3

� 2k
4

� 2k
6

� 8 + 8g. (3)

Since n = k
3

+ k
4

+ k
6

, we obtain

r = (n � 3(k
4

+ k
6

) + 8g � 8)/2.

Since n = c + r, c = (n + 3(k
4

+ k
6

) + 8 � 8g)/2. ⇤

This generalizes the well known result that the num-
ber of convex and reflex vertices of an orthogonal poly-
gon with n vertices are respectively (n + 4)/2 and
(n � 4)/2, see R2 [10].

2.2 Minimizing the Solid Angle Sum of Orthogonal
Polyhedra

Let Vi be the number of i-octant vertices, i = 1, 3, 4, 5, 7.
The angle sum of an orthogonal polyhedron is

S =
⇡

2
V

1

+
3⇡

2
V

3

+ 2⇡V
4

+
5⇡

2
V

5

+
7⇡

2
V

7

. (4)

Since an orthogonal polyhedron has n vertices,

V
1

+ V
3

+ V
4

+ V
5

+ V
7

= n. (5)

We use the polyhedral version of Gauss-Bonnet’s the-
orem to calculate the curvature of the polyhedron [5].
Observe that the angle deficit for 1-octant and 7-octant
vertices is ⇡/2, the angle deficit for 3-octant and 5-
octant vertices is �⇡/2 and the angle deficit for 4-
octant vertices is �⇡. Applying Gauss-Bonnet’s the-
orem, where g is the genus of the polyhedron, we get

⇡

2
(V

1

+ V
7

) � ⇡

2
(V

3

+ 2V
4

+ V
5

) = 4⇡ � 4⇡g (6)

Multiplying (5) by ⇡ and subtracting (6) we obtain:

⇡

2
V

1

+
3⇡

2
V

3

+2⇡V
4

+
3⇡

2
V

5

+
⇡

2
V

7

= n⇡�4⇡+4⇡g (7)

Adding ⇡V
5

+ 3⇡V
7

to both sides of (7) yields:

⇡

2
V

1

+
3⇡

2
V

3

+ 2⇡V
4

+
5⇡

2
V

5

+
7⇡

2
V

7

=

⇡n � 4⇡ + 4⇡g + ⇡V
5

+ 3⇡V
7

(8)

Figure 2: Family of Polyhedra that minimise the solid
angle sum.

The left side of (8) corresponds to the angle sum:

S = ⇡(n � 4 + 4g + V
5

+ 3V
7

) (9)

Thus (9) is minimized when V
5

and V
7

are both equal
to zero. The next result follows.

Theorem 5 The minimum solid angle sum of orthog-

onal polyhedra is (n � 4)⇡ and is achieved by polyhedra

having only 1-octant, 3-octant and 4-octant vertices.

Figure 2 shows an example that achieves the bound
of Theorem 5.

The maximum solid angle sum is reached when we
maximize the number of V

7

and V
5

vertices in (9). In
order to do this, we observe that any orthogonal poly-
hedra P always has at least eight 1-vertices, and if it
is not a box, it has at least eight 1-vertices and four 3-
vertices, or it has ten 1-vertices and two 3-vertices. The
best case arises when P has exactly eight 1-vertices and
four 3-vertices. This can be achieved by carving out of a

box a polyhedra with m = n�8 vertices that minimizes
the sum of its angles, as shown in Figure 3.

Figure 3: An Orthogonal Polyhedron that maximize its
solid angle sum.

Theorem 6 The maximum solid angle sum of orthog-

onal polyhedra is (3n � 24)⇡.
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3 Guarding Polyhedra

We say that an ↵-edge guard is a guard located on an
edge of a polyhedron, occupying the entire edge with an
angle of vision towards the interior of the polyhedron of
size ↵. In this section we will deal with ↵ = ⇡

2

.
An interior point p of a polyhedron is guarded by an

↵-edge guard e if the segment pr, where r is the closest
point to p in e, is perpendicular to e, pr is contained
in the ↵-visibility angle of e, and the interior of pr is
contained in the interior of the polyhedron.

We apply the results obtained in the previous section
to address the following variation of the Art Gallery
Problem: Given an orthogonal polyhedron P in R3, se-
lect a set of ⇡

2

-edge guards located on the edges of P
that guards P .

Note that P has two kinds of edges: convex edges that
cover an internal solid angle of two octants, see Figure
4a, and reflex edges that cover an internal solid angle of
six octants, see Figure 4b.

(a) 2-octant edge (b) 6-octant edge

Figure 4: Types of edges in orthogonal polyhedra

It is easy to see that to guard P it is sufficient to
place one ⇡

2

-edge guard on each convex edge, and two ⇡
2

-
edge guards, in opposite directions, on every reflex edge.
In fact, we can also guard P by applying the previous
rule only to edges parallel to the X -axis, the Y-axis, or
the Z-axis. This follows from the results proved in [2].
For the sake of completeness we describe briefly how to
prove this.

Consider all the faces of P parallel to XZ and YZ
planes. We call a face of P incident to e, a top face f , if
for any interior point q of f there is an ✏ > 0 such that
any point at distance less than or equal to ✏ from q, and
below f belongs to the interior of P . Right, bottom, and
left faces are defined in a similar way, see Figure 5.

Let e be an edge parallel to the Z axis. Given a top
(bottom) face f , we call an edge of f a right edge if
there is an ✏ > 0 such that any point at distance less
than or equal to ✏ from the mid-point of e, and the left
of e belongs to the interior of f . A left edge is defined
in a similar way. Given a right (left) face f , the top and
bottom edges are defined similarly to the left and right
edges, see Figure 5.

We define the placement rules for ⇡
2

-edge guards at
the edges of P parallel to the Z axis, as follows: In the
top-right rule at each right edge of each top face of P ,
and at each top edge of each right face of P we place
a ⇡

2

-edge guard whose angle of illumination covers the
interval of directions 3⇡

2

to 2⇡. We define three extra
rules, the top-left rule, bottom-right rule, and bottom-

left rule in a similar way by rotating our polyhedra 90,
180 and 270 degrees with respect to the Z-axis, and
applying the top-left rule to the polyhedron obtained
from P after applying these rotations.

(a) (b)

(c) (d)

Figure 5: Figures (a) and (b) show top faces in blue
and bottom faces in green. Figures (c) and (d) show
left faces in blue and right faces in green. Figures (a),
(b), (c) and (d) show right, left, top and bottom edges
respectively.

Now we prove the following Lemma:

Lemma 7 Let P be an orthogonal polyhedron with

genus g and h holes on its faces. Then P can be guarded

by the

⇡
2

-edge guards placed by any of the following rules:

top-right, top-left, bottom-right and bottom-left.

Proof. We prove our result for the top-right rule, the
other rules can be proved in a similar fashion. Let p be
a point in P and let � be the plane parallel to the XY
plane containing p. Let Q be the intersection of P with
�. Q consists of a set of orthogonal polygons contained
in �. It is straightforward to see that the top right rule
places ⇡

2

-vertex guards as in the top-right illumination
rule in [2] which illuminates, and thus guards p. Our
result follows. ⇤

Some faces of an orthogonal polyhedron P may have
holes in them. When these holes appear, the 1-skeleton
of P may become disconnected, for an example see Fig-
ure 3. In that example we "carved out" an orthogonal
polyhedron H from a box in the middle of one of its
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faces, call it f . Observe that the k-vertices of H be-
came 8 � k-vertices in P , except for those lying in f , in
that case 1-octant vertices of H became 3-octant ver-
tices of P , and 3-octant vertices of H become 1-octant
vertices of P , (i.e. the convex vertices become reflex
and the reflex vertices become convex), see also Figure
6b. Observe that at least four of the vertices of H in f
are reflex, and that two of the edges incident to them,
are convex, and one is reflex. Thus our guarding rules
place only four edge guards on these edges. This will be
used in the proof of our next Theorem, as this will allow
us to save four edges per each hole in which we carved
an orthogonal polyhedron (in that proof we place five
edges in the edges of a reflex vertex of degree three).

There is a second case in which the 1-skeleton of P
becomes disconnected, and this happens when instead
of carving out an orthogonal polyhedron H, we kind of
"glue" it in the middle of a face f of P , see Figure 6a.
In this case it is easy to see that when we apply the
guarding rules to P described above, the points of P
in H will be guarded by edges in H, and the edges in
P � H can be guarded with edges in the 1-skeleton of
P � H. This implies that the edges of H in f can be
considered as convex edges when applying the guarding
rules described above. Thus we save at least four edge
guards, one for each reflex edge of H in f .

In both cases we save at least four guards per hole.

(a) (b)

Figure 6: (a) Two "glued" orthogonal polyhedron. (b)
An orthogonal polyhedron carved out of another one.

Theorem 8 Let P be an orthogonal polyhedron with n
vertices, k

4

of them are of degree 4, k
6

of degree 6, e
edges, genus g and hm holes in the faces of P . Then

(11e � k
4

� 3k
6

� 12g � 24hm + 12)/72 ⇡
2

-edge guards

are always sufficient to guard the interior of P .

Proof. First we look at the type of vertices of the poly-
hedron P , and describe the number of convex and reflex
edges that each kind of vertex is incident to.

Each 1-octant vertex is incident to three convex edges.
Each 3-octant vertex is incident to two convex edges and
one reflex edge. Each 4-octant vertex with degree four,
is incident to two convex edges and two reflex edges.

Each 4-octant vertex with degree six, is incident to three
convex edges and three reflex edges. Each 5-octant ver-
tex is incident to one convex edge and two reflex edges.
Finally, each 7-octant vertex is incident to three reflex
edges.

By the Theorem 4, P has c = (n+3(k
4

+k
6

)�8g+8)/2
convex vertices and r = (n � 3(k

4

+ k
6

) + 8g � 8)/2
reflex vertices. Note that according to our definition, 4-
octant vertices, whether they have degree four or six are
convex. Then, P has c = (n+k

4

+k
6

�8g+8)/2 convex
vertices, k

4

4-octant vertices of degree four, k
6

4-octant
vertices of degree six, and r = (n�3(k

4

+k
6

)+8g�8)/2
reflex vertices.

In the worst case every convex vertex is adjacent to
three reflex edges, every 4-octant vertex of degree four is
adjacent to two reflex edges and two convex edges, every
4-octant vertex of degree six is adjacent to three reflex
edges and three convex edges, and every reflex vertex is
incident to two reflex edges and one convex edge.

If we place guards on every edge of P then, we have
(6c + 6k

4

+ 9k
6

+ 5r)/2 ⇡
2

-edge guards in total. We
can divide the number of ⇡

2

-edge guards by three and
four, since it is sufficient to choose one of the three axis
directions, and we only need to choose the smallest of
the four guarding rules used in this direction, then we
obtain (6c + 6k

6

+ 9k
6

+ 5r)/24. Substituting c and r
in the above equation, we have a total of (11n + 3k

4

+
9k

6

+ 8)/48 ⇡
2

-edge guards.
As P has hm holes on its faces, and for each of them

we save four edge guards we conclude that the total
number of ⇡

2

-edge guards in P is (11n+3k
4

+9k
6

�8g�
16hm + 8)/48. If we substitute n = (2e � k

4

� 3k
6

)/3
in the number of ⇡

2

-edge guards, then we finally obtain
that (11e�k

4

�3k
6

�12g�24hm+12)/72 ⇡
2

-edge guards
are always sufficient to guard the interior of P .

⇤
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